您的位置:首页 > 教材同步 > 初一数学 > 资料详情
初一数学上册知识点总结:有理数的乘方
编辑:admin 时间:2021-05-08 来源:中学数学网

有理数的乘方

知识点:

一、有理数的乘方法则

1. 运算顺序

先算乘方,后算乘除,最后算加减。

2. 同底数幂的乘法法则:

同底数幂相乘除,原来的底数作底数,指数的和或差作指数。用字母表示为:

a^m×a^n=a^(m+n) 或 a^m÷a^n=a^(m-n) (m、n均为自然数)

3. 幂的乘方

底数不变,指数相乘。用字母表示为:(a^m)^n=a^(m×n)

4. 积的乘方

先把积中的每一个乘数分别乘方,再把所得的幂相乘。用字母表示为:(a×b)^n=a^n×b^n

二、有理数的定义

有理数是指可以写成分数形式的数统称为有理数。任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。任何一个有理数都可以在数轴上表示。整数和分数统称为有理数。其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。

三、有理数的乘方怎么算

运算顺序

1. 先算乘方,后算乘除,最后算加减。

2. 同底数幂的乘法法则:同底数幂相乘除,原来的底数作底数,指数的和或差作指数。用字母表示为:a^m×a^n=a^(m+n) 或 a^m÷a^n=a^(m-n) (m、n均为自然数)

3. 幂的乘方,底数不变,指数相乘。用字母表示为:(a^m)^n=a^(m×n)

4. 积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘。用字母表示为:(a×b)^n=a^n×b^n

有理数乘方的意义跟有理数乘方运算的性质的区别:

有理数乘方的意义:求n个相同因数a的乘积的运算,记作a^n,读作a的n次方。

有理数乘方运算的性质:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶次幂是正数,0的任何正整数次幂都得0。

求相同因数的积叫做乘方,乘方运算的结果叫幂。


发表评论
* 评论内容:
* 用户名:匿名发表 *不选请在前面输入您的昵称
* 验证码: 验证码,看不清楚?请点击刷新验证码 *请输入4位数的验证码
 
发表评论须知:
一、所发文章必须遵守《互联网电子公告服务管理规定》;
二、严禁发布供求代理信息、公司介绍、产品信息等广告宣传信息;
三、严禁恶意重复发帖;
四、严禁对个人、实体、民族、国家等进行漫骂、污蔑、诽谤。
名师视频辅导
热门资讯
  • 本周
  • 本月
  • 全部